Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.557
Filtrar
1.
Bioorg Med Chem ; 102: 117679, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38461555

RESUMO

Trichomoniasis, a prevalent sexually transmitted infection (STI) caused by the protozoan Trichomonas vaginalis, has gained increased significance globally. Its relevance has grown in recent years due to its association with a heightened risk of acquiring and transmitting the human immunodeficiency virus (HIV) and other STIs. In addition, many publications have revealed a potential link between trichomoniasis and certain cancers. Metronidazole (MTZ), a nitroimidazole compound developed over 50 years ago, remains the first-choice drug for treatment. However, reports of genotoxicity and side effects underscore the necessity for new compounds to address this pressing global health concern. In this study, we synthesized ten pyrazole-nitroimidazoles 1(a-j) and 4-nitro-1-(hydroxyethyl)-1H-imidazole 2, an analog of metronidazole (MTZ), and assessed their trichomonacidal and cytotoxic effects. All compounds 1(a-j) and 2 exhibited IC50 values ≤ 20 µM and ≤ 41 µM, after 24 h and 48 h, respectively. Compounds 1d (IC50 5.3 µM), 1e (IC50 4.8 µM), and 1i (IC50 5.2 µM) exhibited potencies equivalent to MTZ (IC50 4.9 µM), the reference drug, after 24 h. Notably, compound 1i showed high anti-trichomonas activity after 24 h (IC50 5.2 µM) and 48 h (IC50 2.1 µM). Additionally, all compounds demonstrated either non-cytotoxic to HeLa cells (CC50 > 100 µM) or low cytotoxicity (CC50 between 69 and 100 µM). These findings suggest that pyrazole-nitroimidazole derivatives represent a promising heterocyclic system, serving as a potential lead for further optimization in trichomoniasis chemotherapy.


Assuntos
Antiprotozoários , Nitroimidazóis , Tricomoníase , Trichomonas vaginalis , Humanos , Nitroimidazóis/farmacologia , Metronidazol/farmacologia , Células HeLa , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Tricomoníase/tratamento farmacológico , Pirazóis/farmacologia , Pirazóis/uso terapêutico
2.
J Med Chem ; 67(4): 2264-2286, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38351709

RESUMO

Delamanid, bedaquiline, and pretomanid have been recently added in the anti-tuberculosis (anti-TB) treatment regimens and have emerged as potential solutions for combating drug-resistant TB. These drugs have proven to be effective in treating drug-resistant TB when used in combination. However, concerns have been raised about the eventual loss of these drugs due to evolving resistance mechanisms and certain adverse effects such as prolonged QT period, gastrointestinal problems, hepatotoxicity, and renal disorders. This Perspective emphasizes the properties of these first-in-class drugs, including their mechanism of action, pharmacokinetics/pharmacodynamics profiles, clinical studies, adverse events, and underlying resistance mechanisms. A brief coverage of efforts toward the generation of best-in-class leads in each class is also provided. The ongoing clinical trials of new combinations of these drugs are discussed, thus providing a better insight into the use of these drugs while designing an effective treatment regimen for resistant TB cases.


Assuntos
Diarilquinolinas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Mycobacterium tuberculosis , Nitroimidazóis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/efeitos adversos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Oxazóis/farmacologia , Oxazóis/uso terapêutico , Resistência a Medicamentos
3.
Antimicrob Agents Chemother ; 68(4): e0156223, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38376228

RESUMO

The combination of bedaquiline, pretomanid, and linezolid (BPaL) has become a preferred regimen for treating multidrug- and extensively drug-resistant tuberculosis (TB). However, treatment-limiting toxicities of linezolid and reports of emerging bedaquiline and pretomanid resistance necessitate efforts to develop new short-course oral regimens. We recently found that the addition of GSK2556286 increases the bactericidal and sterilizing activity of BPa-containing regimens in a well-established BALB/c mouse model of tuberculosis. Here, we used this model to evaluate the potential of new regimens combining bedaquiline or the more potent diarylquinoline TBAJ-587 with GSK2556286 and the DprE1 inhibitor TBA-7371, all of which are currently in early-phase clinical trials. We found the combination of bedaquiline, GSK2556286, and TBA-7371 to be more active than the first-line regimen and nearly as effective as BPaL in terms of bactericidal and sterilizing activity. In addition, we found that GSK2556286 and TBA-7371 were as effective as pretomanid and the novel oxazolidinone TBI-223 when either drug pair was combined with TBAJ-587 and that the addition of GSK2556286 increased the bactericidal activity of the TBAJ-587, pretomanid, and TBI-223 combination. We conclude that GSK2556286 and TBA-7371 have the potential to replace pretomanid, an oxazolidinone, or both components, in combination with bedaquiline or TBAJ-587.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Oxazolidinonas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Linezolida/farmacologia , Linezolida/uso terapêutico , Tuberculose/tratamento farmacológico , Nitroimidazóis/farmacologia , Oxazolidinonas/farmacologia , Oxazolidinonas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
4.
Biomed Pharmacother ; 171: 116106, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181711

RESUMO

In this study, a series of 2-Aryl-1H-benzo[d]imidazole derivatives were developed to target intra- and extracellular microtubule networks. Compounds O-7 and O-10 showed impressive anti-proliferative activity across various tested cell lines, demonstrating selectivity indexes of 151.7 and 61.9, respectively. O-7 achieved an IC50 value of 0.236 ± 0.096 µM, while O-10 showed an IC50 value of 0.622 ± 0.13 µM against A549 cell lines. The induction of early-stage apoptosis in a dose-dependent manner further underscored the potential of O-7 and O-10 as effective anti-proliferative agents. O-7 and O-10 exhibited substantial inhibition of wound closure, with wound closure percentages decreasing from 23% at 0 µM to 0.43% and 2.62% at 20 µM, respectively. Colony formation reduction rates were impressive, with O-7 at 74.2% and O-10 at 81.2%. These results indicate that the O-7 and O-10 can impede cancer cell migration and have a high potential to curtail colony formation. The mode of action investigations for O-7 and O-10 revealed that O-7 could inhibit in vitro tubulin polymerization and disrupt the intracellular microtubule cytoskeleton. This disruption led to cell cycle arrest in the G2/M phase, indicating that O-7 exerts its anticancer activity through microtubule destabilization. However, O-10 shows a different mode of action than O-7 and requires further investigation. Overall, our study showcases the potential of the synthesized benzimidazole derivatives as novel and selective anticancer agents, motivating further exploration of their pharmacological properties and therapeutic applications.


Assuntos
Antineoplásicos , Nitroimidazóis , Relação Estrutura-Atividade , Proliferação de Células , Microtúbulos , Antineoplásicos/farmacologia , Tubulina (Proteína)/metabolismo , Imidazóis/farmacologia , Apoptose , Nitroimidazóis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular
5.
Chem Biodivers ; 21(1): e202301276, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38175829

RESUMO

Candidiasis is one of the most serious microbial infections in the world. One of the main virulence factors for Candida albicans is the crucial secretion of aspartic proteases (Saps). Saps are hydrolytic enzymes that play a major role in many fungal pathophysiological processes as well as in many levels of the associations between the fungus and its host. In this work, we report on the synthesis, characterization, and anti-candida agent evaluation of a family of 13 imidazolidine-based aspartate protease inhibitors. In vitro and in silico enzyme inhibition studies have confirmed these compounds' ability to inhibit fungal aspartate protease. Based on the molecular mechanistic value scores from molecular docking and MD simulations, we selected the top compounds 5b (binding energy -13.90 kcal/mol) and 5m (binding energy -12.94 kcal/mol) from among 5a-l based on the molecular mechanistic value scores from molecular docking and MD simulations for use in in vitro validations. In the results, imidazolidine derivatives showed strong aspartic protease inhibition activity. In conclusion, compounds 5b and 5m were found as potent anti-candida agents and screened for further pre-clinical and clinical validations.


Assuntos
Ácido Aspártico Proteases , Imidazolidinas , Nitroimidazóis , Simulação de Acoplamento Molecular , Ácido Aspártico/farmacologia , Inibidores de Proteases/farmacologia , Candida albicans , Candida , Imidazóis/farmacologia , Nitroimidazóis/farmacologia , Imidazolidinas/farmacologia
6.
Drug Dev Res ; 85(1): e22126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37915124

RESUMO

A hypoxic environment occurs predominantly in tumors. During the growth phase of a tumor, it grows until it exceeds its blood supply, leaving regions of the tumor in which the oxygen pressure is dramatically low. They are virtually absent in normal tissues, thus creating perfect conditions for selective bioreductive therapy of tumors. To this aim, a novel series of cytotoxic radiosensitizer agents were synthesized by linking the nitroimidazole scaffold with oxadiazole or triazole rings. The majority of the compounds exhibited moderate to excellent antiproliferative activities toward HCT116 cell line under normoxic and hypoxic conditions. The structure-activity relationship study revealed that compounds containing the free thiol group either in the oxadiazoles 11a,b or the triazoles 21a,b-23a,b demonstrated the strongest antiproliferative activity, which proves that the free thiol group plays a crucial role in the antiproliferative activity of our compounds under both normoxic (half-maximal inhibitory concentration [IC50 ] = 12.50-24.39 µM) and hypoxic conditions (IC50 = 4.69-11.56 µM). Radiosensitizing assay of the four most active cytotoxic compounds 11b and 21-23b assured the capability of the compounds to enhance the sensitivity of the tumor cells to the DNA damaging activity of γ-radiation (IC50 = 2.23-5.18 µM). To further investigate if the cytotoxicity of our most active compounds was due to a specific signaling pathway, the online software SwissTargetPrediction was exploited and a molecular docking study was done that proposed cyclin-dependent kinase 2 (CDK2) enzyme to be the most promising target. The CDK2 inhibitory assay assured this assumption as five out of six compounds demonstrated a comparable inhibitory activity with roscovitine, among which compound 21b showed threefold more potent inhibitory activity in comparison with the reference compound. A further biological evaluation proved compound 21b to have an apoptotic activity and cell cycle arrest activity at the G1 and S phases. During the AutoQSAR analysis, the model demonstrated excellent regression between the predicted and experimental activity with r2 = 0.86. Subsequently, we used the model to predict the activity of the test set compounds that came with r2 = 0.95.


Assuntos
Antineoplásicos , Antiprotozoários , Nitroimidazóis , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Linhagem Celular Tumoral , Hipóxia Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Citotoxinas , Nitroimidazóis/farmacologia , Antiprotozoários/farmacologia , Compostos de Sulfidrila , Inibidores de Proteínas Quinases/farmacologia
7.
Antimicrob Agents Chemother ; 68(1): e0073123, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38063401

RESUMO

The intestinal parasites Giardia lamblia and Entamoeba histolytica are major causes of morbidity and mortality associated with diarrheal diseases. Metronidazole is the most common drug used to treat giardiasis and amebiasis. Despite its efficacy, treatment failures in giardiasis occur in up to 5%-40% of cases. Potential resistance of E. histolytica to metronidazole is an increasing concern. Therefore, it is critical to search for more effective drugs to treat giardiasis and amebiasis. We identified antigiardial and antiamebic activities of the rediscovered nitroimidazole compound, fexinidazole, and its sulfone and sulfoxide metabolites. Fexinidazole is equally active against E. histolytica and G. lamblia trophozoites, and both metabolites were 3- to 18-fold more active than the parent drug. Fexinidazole and its metabolites were also active against a metronidazole-resistant strain of G. lamblia. G. lamblia and E. histolytica cell extracts exhibited decreased residual nitroreductase activity when metabolites were used as substrates, indicating nitroreductase may be central to the mechanism of action of fexinidazole. In a cell invasion model, fexinidazole and its metabolites significantly reduced the invasiveness of E. histolytica trophozoites through basement membrane matrix. A q.d. oral dose of fexinidazole and its metabolites at 10 mg/kg for 3 days reduced G. lamblia infection significantly in mice compared to control. The newly discovered antigiardial and antiamebic activities of fexinidazole, combined with its FDA-approval and inclusion in the WHO Model List of Essential Medicines for the treatment of human African trypanosomiasis, offer decreased risk and a shortened development timeline toward clinical use of fexinidazole for treatment of giardiasis or amebiasis.


Assuntos
Amebíase , Entamoeba histolytica , Giardia lamblia , Giardíase , Nitroimidazóis , Camundongos , Animais , Humanos , Giardíase/tratamento farmacológico , Giardíase/parasitologia , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Nitroimidazóis/farmacologia , Nitrorredutases
8.
Exp Parasitol ; 255: 108647, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37914151

RESUMO

Chagas disease (CD) remains neglected and causes high morbidity and mortality. The great difficulty is the lack of effective treatment. The current drugs cause side effects and have limited therapeutic efficacy in the chronic phase. This study aims to fulfil some gaps in studies of the natural substance lychnopholide nanoencapsulated LYC-PLA-PEG-NC (LYC-NC) and free (Free-LYC): the activity in epimastigotes and amastigotes to determine its selectivity index (SI), the therapeutic efficacy in mice infected with Colombian Trypanosoma cruzi strain and insight of the mechanism of LYC-NC action on T. cruzi. The SI was obtained by calculation of the ratio between the IC50 value toward H9c2 cells divided by the IC50 value in the anti-T. cruzi test. Infected Swiss mice were treated with 2 and 12 mg/kg/day via intravenous and oral, respectively, and the therapeutic efficacy was determined. The IC50 of LYC-NC and Free-LYC for epimastigotes of T. cruzi were similar. Both were active against amastigotes in cell culture, particularly Free-LYC. The SI of LYC-NC and Free-LYC were 45.38 and 32.11, respectively. LYC-NC 2 and 12 mg/kg/day cured parasitologically, 62.5% and 80% of the animals, respectively, infected with a strain resistant to treatment. The fluorescent NC was distributed in the cardiomyocyte cytoplasm, infected or not, and interacted with the trypomastigotes. Together, these results represent advances in demonstrating LYC as a potent new therapeutic option for treating CD.


Assuntos
Doença de Chagas , Nanocápsulas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Animais , Camundongos , Nifurtimox/uso terapêutico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Doença de Chagas/tratamento farmacológico , Poliésteres/farmacologia , Poliésteres/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
9.
Indian J Tuberc ; 70(4): 451-459, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37968051

RESUMO

BACKGROUND: Tuberculosis still looms large on the global epidemiological radar and warrants continuous effort in the direction of developing new anti TB drugs to battle evolving resistance mechanisms of the causative agent Mycobacterium tuberculosis. METHODS: In the present paper, synthesis of n has been attempted. All the synthesized compounds were characterized by 1H-NMR, 13C-NMR, IR and Mass spectroscopy. Anti TB profile of the synthesized compounds were tested by MABA assay employing M.tb H37Rv strain. RESULTS: Two compounds namely N-(2-acetoxy)-N-methyl-4-(4,5-diphenyl-1H-imidazole-2-yl) benzenamine and 2-(N-(4-(4,5-bis(4-methoxyphenyl)-1H-imidazole-2-yl)phenyl)-N-methylamino) ethanol exhibited impressive anti TB inhibitory potential with an MIC of 3.125 µg/mL. To visualize the binding interactions of the active compounds molecular docking studies were carried out on putative target M. tuberculosis Glutamine synthetase (MtGS) in complex with a trisubstituted imidazole. To ascertain their drug likeliness and safety profile in silico ADME/T prediction was performed on all the synthesized compounds. CONCLUSION: Three compounds 1a, 2g and 2c exhibited good inhibitory potency against M.tb H37Rv and all the synthesized compounds also show promising antifungal activity.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Antifúngicos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Tuberculose/microbiologia , Imidazóis/farmacologia , Imidazóis/química , Nitroimidazóis/farmacologia
10.
PLoS Pathog ; 19(11): e1011627, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956215

RESUMO

Benznidazole is the front-line drug used to treat infections with Trypanosoma cruzi, the causative agent of Chagas disease. However, for reasons that are unknown, treatment failures are common. When we examined parasites that survived benznidazole treatment in mice using highly sensitive in vivo and ex vivo bioluminescence imaging, we found that recrudescence is not due to persistence of parasites in a specific organ or tissue that preferentially protects them from drug activity. Surviving parasites are widely distributed and located in host cells where the vast majority contained only one or two amastigotes. Therefore, infection relapse does not arise from a small number of intact large nests. Rather, persisters are either survivors of intracellular populations where co-located parasites have been killed, or amastigotes in single/low-level infected cells exist in a state where they are less susceptible to benznidazole. To better assess the nature of parasite persisters, we exposed infected mammalian cell monolayers to a benznidazole regimen that reduces the intracellular amastigote population to <1% of the pre-treatment level. Of host cells that remained infected, as with the situation in vivo, the vast majority contained only one or two surviving intracellular amastigotes. Analysis, based on non-incorporation of the thymidine analogue EdU, revealed these surviving parasites to be in a transient non-replicative state. Furthermore, treatment with benznidazole led to widespread parasite DNA damage. When the small number of parasites which survive in mice after non-curative treatment were assessed using EdU labelling, this revealed that these persisters were also initially non-replicative. A possible explanation could be that triggering of the T. cruzi DNA damage response pathway by the activity of benznidazole metabolites results in exit from the cell cycle as parasites attempt DNA repair, and that metabolic changes associated with non-proliferation act to reduce drug susceptibility. Alternatively, a small percentage of the parasite population may pre-exist in this non-replicative state prior to treatment.


Assuntos
Doença de Chagas , Nitroimidazóis , Parasitos , Tripanossomicidas , Trypanosoma cruzi , Animais , Camundongos , Trypanosoma cruzi/genética , Nitroimidazóis/farmacologia , Doença de Chagas/parasitologia , Dano ao DNA , Tripanossomicidas/farmacologia , Tripanossomicidas/metabolismo , Mamíferos
11.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005183

RESUMO

Chagas disease (CD), which is caused by Trypanosoma cruzi and was discovered more than 100 years ago, remains the leading cause of death from parasitic diseases in the Americas. As a curative treatment is only available for the acute phase of CD, the search for new therapeutic options is urgent. In this study, nitroazole and azole compounds were synthesized and underwent molecular modeling, anti-T. cruzi evaluations and nitroreductase enzymatic assays. The compounds were designed as possible inhibitors of ergosterol biosynthesis and/or as substrates of nitroreductase enzymes. The in vitro evaluation against T. cruzi clearly showed that nitrotriazole compounds are significantly more potent than nitroimidazoles and triazoles. When their carbonyls were reduced to hydroxyl groups, the compounds showed a significant increase in activity. In addition, these substances showed potential for action via nitroreductase activation, as the substances were metabolized at higher rates than benznidazole (BZN), a reference drug against CD. Among the compounds, 1-(2,4-difluorophenyl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethanol (8) is the most potent and selective of the series, with an IC50 of 0.39 µM and selectivity index of 3077; compared to BZN, 8 is 4-fold more potent and 2-fold more selective. Moreover, this compound was not mutagenic at any of the concentrations evaluated, exhibited a favorable in silico ADMET profile and showed a low potential for hepatotoxicity, as evidenced by the high values of CC50 in HepG2 cells. Furthermore, compared to BZN, derivative 8 showed a higher rate of conversion by nitroreductase and was metabolized three times more quickly when both compounds were tested at a concentration of 50 µM. The results obtained by the enzymatic evaluation and molecular docking studies suggest that, as planned, nitroazole derivatives may utilize the nitroreductase metabolism pathway as their main mechanism of action against Trypanosoma cruzi. In summary, we have successfully identified and characterized new nitrotriazole analogs, demonstrating their potential as promising candidates for the development of Chagas disease drug candidates that function via nitroreductase activation, are considerably selective and show no mutagenic potential.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Mutagênicos/farmacologia , Tripanossomicidas/farmacologia , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Triazóis/química , Nitrorredutases/metabolismo
12.
Mem Inst Oswaldo Cruz ; 118: e220295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878830

RESUMO

BACKGROUND: Trypanosoma cruzi, which causes Chagas disease (CD), is a versatile haemoparasite that uses several strategies to evade the host's immune response, including adipose tissue (AT), used as a reservoir of infection. As it is an effective barrier to parasite evasion, the effectiveness of the drug recommended for treating CD, Benznidazole (BZ), may be questionable. OBJECTIVE: To this end, we evaluated the parasite load and immunomodulation caused by BZ treatment in the culture of adipocytes differentiated from human adipose tissue-derived stem cells (ADSC) infected with T. cruzi. METHODS: The ADSC were subjected to adipogenic differentiation. We then carried out four cultures in which we infected the differentiated AT with trypomastigote forms of the Y strain of T. cruzi and treated them with BZ. After the incubation, the infected AT was subjected to quantitative polymerase chain reaction (qPCR) to quantify the parasite load and transmission electron microscopy (TEM) to verify the infection. The supernatant was collected to measure cytokines, chemokines, and adipokines. FINDINGS: We found elevated secretion of IL-6, CXCL-10/IP-10, CCL2/MCP-1, CCL5/RANTES, and leptin in infected fat cells. However, treatment with BZ promoted a decrease in IL-6. MAIN CONCLUSION: Therefore, we believe that BZ has a beneficial role as it reduces inflammation in infected fat cells.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Interleucina-6 , Doença de Chagas/parasitologia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Tecido Adiposo , Adipócitos , Diferenciação Celular , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
13.
Nat Commun ; 14(1): 6769, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880260

RESUMO

Post-infectious conditions present major health burdens but remain poorly understood. In Chagas disease (CD), caused by Trypanosoma cruzi parasites, antiparasitic agents that successfully clear T. cruzi do not always improve clinical outcomes. In this study, we reveal differential small molecule trajectories between cardiac regions during chronic T. cruzi infection, matching with characteristic CD apical aneurysm sites. Incomplete, region-specific, cardiac small molecule restoration is observed in animals treated with the antiparasitic benznidazole. In contrast, superior restoration of the cardiac small molecule profile is observed for a combination treatment of reduced-dose benznidazole plus an immunotherapy, even with less parasite burden reduction. Overall, these results reveal molecular mechanisms of CD treatment based on simultaneous effects on the pathogen and on host small molecule responses, and expand our understanding of clinical treatment failure in CD. This link between infection and subsequent persistent small molecule perturbation broadens our understanding of infectious disease sequelae.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Animais , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Coração , Progressão da Doença
14.
Int J Antimicrob Agents ; 62(4): 106953, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37595848

RESUMO

Pretomanid (PA-824), a novel anti-tuberculosis (TB) nitroimidazoxazine, has been approved for multi-drug-resistant TB treatment for a few years. Pretomanid has been demonstrated to be highly active against Mycobacterium tuberculosis when combined with other anti-TB drugs. This review provides an update of the current knowledge on the modes of action, resistance mechanisms, emergence of drug resistance, and status of antimicrobial susceptibility testing for pretomanid and its relevance for clinical practice. Pretomanid resistance has been reported in in-vitro and animal models but not yet in clinical trials. Pretomanid-resistance-associated mutations have been reported in the fbiA, fbiB, fbiC, fbiD, ddn and fgd1 genes. However, understanding of in-vivo molecular resistance mechanisms remains limited, and complicates the development of accurate antimicrobial susceptibility testing methods for pretomanid. As such, no reference method for antimicrobial susceptibility testing of pretomanid has been established to guide clinical use. Further studies linking specific mutations, in-vitro susceptibility, drug exposure and resistance mechanisms to treatment failure with pretomanid should be prioritized.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
15.
Eur J Med Chem ; 260: 115451, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573209

RESUMO

Chagas disease and leishmaniasis are neglected diseases of high priority as a public health problem. Pharmacotherapy is based on the administration of a few drugs, which exhibit hazardous adverse effects and toxicity to the patients. Thus, the search for new antitrypanosomatid drugs is imperative to overcome the limitations of the treatments. In this work, 46 2-nitroimidazole 3,5-disubstituted isoxazole compounds were synthesized in good yields by [3 + 2] cycloaddition reaction between terminal acetylene (propargyl-2-nitroimidazole) and chloro-oximes. The compounds were non-toxic to LLC-MK2 cells. Compounds 30, 35, and 44 showed in vitro antichagasic activity, 15-fold, 12-fold, and 10-fold, respectively, more active than benznidazole (BZN). Compounds 30, 35, 44, 45, 53, and 61 acted as substrates for the TcNTR enzyme, indicating that this might be one of the mechanisms of action involved in their antiparasitic activity. Piperazine series and 4-monosubstituted compounds were potent against T. cruzi parasites. Besides the in vitro activity observed in compound 45, the in vivo assay showed that the compound only reduced the parasitemia levels by the seventh-day post-infection (77%, p > 0.001) compared to the control group. However, 45 significantly reduced the parasite load in cardiac tissue (p < 0.01) 11 days post-infection. Compounds 49, 52, and 54 showed antileishmanial activity against intracellular amastigotes of Leishmania (L.) amazonensis at the same range as amphotericin B. These findings highlight the antitrypanosomatid properties of 2-nitroimidazole 3,5-disubstituted isoxazole compounds and the possibility in using them as antitrypanosomatid agents in further studies.


Assuntos
Antiprotozoários , Doença de Chagas , Nitroimidazóis , Trypanosoma cruzi , Humanos , Antiprotozoários/química , Doença de Chagas/tratamento farmacológico , Isoxazóis/química , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Relação Estrutura-Atividade , Reação de Cicloadição
16.
Sci Rep ; 13(1): 12192, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500681

RESUMO

Infections by Entamoeba histolytica (E. histolytica) lead to considerable morbidity and mortality worldwide and treatment is reliant on a single class of drugs, nitroimidazoles. Treatment failures and intermittent reports of relapse from different parts of world indicate towards development of clinical drug resistance. In the present study, susceptibility testing of clinical isolates of E. histolytica was carried against metronidazole and tinidazole. Additionally, anti-amoebic property of active compounds of Andrographis paniculata was also evaluated. Prevalence of metronidazole resistance gene (nim) in patients attending hospital was also done to get comprehensive insight of present situation of drug resistance in E. histolytica. Mean inhibitory concentration 50 (IC50) value of E. histolytica isolates against metronidazole and tinidazole was 20.01 and 16.1 µM respectively. Andrographolide showed minimum mean IC50 value (3.06 µM). Significant percentage inhibition of E. histolytica isolates by andrographolide was seen as compared to metronidazole (p = 0.0495). None of E. histolytica isolates showed presence of nim gene. However, in stool samples from hospital attending population, prevalence of nimE gene was found to be 76.6% (69/90) and 62.2% (56/90) in diarrheal and non-diarrheal samples respectively. Inhibitory concentration of commonly used nitroimidazoles against clinical isolates of E. histolytica are on rise. Percentage inhibition of E. histolytica isolates by andrographolide was significantly higher than control drug metronidazole.


Assuntos
Entamoeba histolytica , Abscesso Hepático Amebiano , Nitroimidazóis , Humanos , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Entamoeba histolytica/genética , Abscesso Hepático Amebiano/diagnóstico , Abscesso Hepático Amebiano/tratamento farmacológico , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Tinidazol/uso terapêutico , Reposicionamento de Medicamentos
17.
Nat Commun ; 14(1): 4130, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438331

RESUMO

Severe outbreaks and deaths have been linked to the emergence and global spread of fluoroquinolone-resistant Clostridioides difficile over the past two decades. At the same time, metronidazole, a nitro-containing antibiotic, has shown decreasing clinical efficacy in treating C. difficile infection (CDI). Most metronidazole-resistant C. difficile exhibit an unusual resistance phenotype that can only be detected in susceptibility tests using molecularly intact heme. Here, we describe the mechanism underlying this trait. We find that most metronidazole-resistant C. difficile strains carry a T-to-G mutation (which we term PnimBG) in the promoter of gene nimB, resulting in constitutive transcription. Silencing or deleting nimB eliminates metronidazole resistance. NimB is related to Nim proteins that are known to confer resistance to nitroimidazoles. We show that NimB is a heme-dependent flavin enzyme that degrades nitroimidazoles to amines lacking antimicrobial activity. Furthermore, occurrence of the PnimBG mutation is associated with a Thr82Ile substitution in DNA gyrase that confers fluoroquinolone resistance in epidemic strains. Our findings suggest that the pandemic of fluoroquinolone-resistant C. difficile occurring over the past few decades has also been characterized by widespread resistance to metronidazole.


Assuntos
Clostridioides difficile , Nitroimidazóis , Metronidazol/farmacologia , Clostridioides difficile/genética , Fluoroquinolonas/farmacologia , Nitroimidazóis/farmacologia , Clostridioides , Heme , Pandemias
18.
Nat Commun ; 14(1): 3828, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380634

RESUMO

Mycobacterium tuberculosis is one of the global leading causes of death due to a single infectious agent. Pretomanid and delamanid are new antitubercular agents that have progressed through the drug discovery pipeline. These compounds are bicyclic nitroimidazoles that act as pro-drugs, requiring activation by a mycobacterial enzyme; however, the precise mechanisms of action of the active metabolite(s) are unclear. Here, we identify a molecular target of activated pretomanid and delamanid: the DprE2 subunit of decaprenylphosphoribose-2'-epimerase, an enzyme required for the synthesis of cell wall arabinogalactan. We also provide evidence for an NAD-adduct as the active metabolite of pretomanid. Our results highlight DprE2 as a potential antimycobacterial target and provide a foundation for future exploration into the active metabolites and clinical development of pretomanid and delamanid.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Nitroimidazóis , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Terapia de Alvo Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Oxirredutases do Álcool/antagonistas & inibidores , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Parede Celular/metabolismo , Resistência a Medicamentos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Espectrofotometria , NAD/metabolismo , Cinética
19.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298933

RESUMO

The role of hypoxic tumour cells in resistance to radiotherapy, and in suppression of immune response, continues to endorse tumour hypoxia as a bona fide, yet largely untapped, drug target. Radiotherapy innovations such as stereotactic body radiotherapy herald new opportunities for classical oxygen-mimetic radiosensitisers. Only nimorazole is used clinically as a radiosensitiser, and there is a dearth of new radiosensitisers in development. In this report, we augment previous work to present new nitroimidazole alkylsulfonamides and we document their cytotoxicity and ability to radiosensitise anoxic tumour cells in vitro. We compare radiosensitisation with etanidazole and earlier nitroimidazole sulfonamide analogues and we identify 2-nitroimidazole and 5-nitroimidazole analogues with marked tumour radiosensitisation in ex vivo assays of surviving clonogens and with in vivo tumour growth inhibition.


Assuntos
Neoplasias , Nitroimidazóis , Radiossensibilizantes , Humanos , Hipóxia Celular , Nitroimidazóis/farmacologia , Radiossensibilizantes/farmacologia , Hipóxia , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia
20.
Parasit Vectors ; 16(1): 167, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217925

RESUMO

BACKGROUND: Chagas disease (CD), caused by the parasite Trypanosoma cruzi, is a serious public health concern in Latin America. Nifurtimox and benznidazole (BZ), the only two drugs currently approved for the treatment of CD, have very low efficacies in the chronic phase of the disease and several toxic side effects. Trypanosoma cruzi strains that are naturally resistant to both drugs have been reported. We performed a comparative transcriptomic analysis of wild-type and BZ-resistant T. cruzi populations using high-throughput RNA sequencing to elucidate the metabolic pathways related to clinical drug resistance and identify promising molecular targets for the development of new drugs for treating CD. METHODS: All complementary DNA (cDNA) libraries were constructed from the epimastigote forms of each line, sequenced and analysed using the Prinseq and Trimmomatic tools for the quality analysis, STAR as the aligner for mapping the reads against the reference genome (T. cruzi Dm28c-2018), the Bioconductor package EdgeR for statistical analysis of differential expression and the Python-based library GOATools for the functional enrichment analysis. RESULTS: The analytical pipeline with an adjusted P-value of < 0.05 and fold-change > 1.5 identified 1819 transcripts that were differentially expressed (DE) between wild-type and BZ-resistant T. cruzi populations. Of these, 1522 (83.7%) presented functional annotations and 297 (16.2%) were assigned as hypothetical proteins. In total, 1067 transcripts were upregulated and 752 were downregulated in the BZ-resistant T. cruzi population. Functional enrichment analysis of the DE transcripts identified 10 and 111 functional categories enriched for the up- and downregulated transcripts, respectively. Through functional analysis we identified several biological processes potentially associated with the BZ-resistant phenotype: cellular amino acid metabolic processes, translation, proteolysis, protein phosphorylation, RNA modification, DNA repair, generation of precursor metabolites and energy, oxidation-reduction processes, protein folding, purine nucleotide metabolic processes and lipid biosynthetic processes. CONCLUSIONS: The transcriptomic profile of T. cruzi revealed a robust set of genes from different metabolic pathways associated with the BZ-resistant phenotype, proving that T. cruzi resistance mechanisms are multifactorial and complex. Biological processes associated with parasite drug resistance include antioxidant defenses and RNA processing. The identified transcripts, such as ascorbate peroxidase (APX) and iron superoxide dismutase (Fe-SOD), provide important information on the resistant phenotype. These DE transcripts can be further evaluated as molecular targets for new drugs against CD.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Tripanossomicidas/farmacologia , Transcriptoma , Perfilação da Expressão Gênica , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...